APPENDIX G:

HISTORIC FOUNTAIN RESTORATION REPORT
The Hollyhock House, Barnsdale Park
4800 Hollywood Boulevard
Los Angeles, CA 90027-5390

Prepared for:

LSA Associates, Inc.
1500 Iowa Avenue; Suite 200
Riverside, CA 92507
Phone: 951.781.9310 Fax: 951.781.4277

Chattel Architecture, Planning and Preservation, Inc.
13417 Ventura Boulevard,
Sherman Oaks, CA 91423-3938
Phone: 818.788.7954 Fax: 818.788.9795

Prepared by:

Drake Addison Woods
Addison Pools, Inc.
10835 Magnolia Boulevard
North Hollywood, CA 91604
Phone: 818.508.3039 Fax: 818.508.9949
Table of Contents

Existing Project Description

Size of vessels
Design intent

General Condition

Existing structural condition
Existing mechanical condition of piping
Existing condition of electrical
Existing condition of equipment
Existing condition of interior surface

Summary of Cause of Condition

Structural
Mechanical
Electrical
Interior surface

Restoration/Repair Design Work Required

Proposed repair or replacement design
Proposed hydraulic repair/replacement design
Proposed electrical repair design
Proposed equipment replacement design
Proposed interior surface repair and design

Summary

Approximate Replacement Estimate

Approximate Repair Estimate

The Hollyhock House Fountains Restoration
Consultants List Required for Replacement/Repair

Historical Consultant
Surveyor
Geologist/Soils Engineer
Structural Engineer
Hydraulic/Mechanical Consultant
Electrical Design Consultant
Landscape Material Consultant
Contractor

Appendix

1. Archival photo of round fountain
2. Archival photo of round fountain
3. Archival photo of round fountain
4. Archival photo of round fountain
5. Existing round fountain overall photo
6. Crack detail; north and south
7. Piping detail, overflow pipe and possible pump location
8. Make-up water detail
9. Interior surface detail

10. Archival photo of square photo
11. Archival photo of square fountain
12. Existing square fountain overall photo
13. Crack detail
14. Make-up water detail
15. Interior surface detail

16. Typical detail of structural repair method for round fountain
17. Typical underground filtration device – Vault Pack
18. Typical automatic fill device with overflow
19. Typical lighting suggestions
20. Bonding requirement

The Hollyhock House Fountains Restoration
Project Description

Eastern Fountain, Round Terraced

Size

Center section, approximately 18’ across a circular shaped vessel

Larger ellipse, encircling the center fountain by 50% and approximately 30” wide

Total water quantity, both vessels; approximately 2,900 gallons

Original Design Intent

Subject to some speculation; ideas to include

- The fountain was to spill from the semi-circle into the round portion
- The entire fountain water level to be at a similar elevation.
- The wall separating the vessels was intended to be a walk-way to view the planting material
- The semi circular area being a place to contain and separate varieties of planted material
- The circular fountain was to flow west, through a meandering stream along the north section of the courtyard and house, flow through the house into the vessel in front of the fireplace and overflow into the large square vessel at the west side of the home, creating an effect of water flowing through the home
General Condition

The overall condition of the fountain is poor and unable to retain water. It is unfeasible for the fountain to be operational without significant work. The breakdown of condition is as follows;

- Existing Structural Condition

 The fountain has several cracks at, below and above waterline. While the ones at waterline conceivably could be allowed to remain, the ones below the waterline would allow water to escape into the soils below, further exacerbating the damage.

- Mechanical Condition – Piping

 Generally non-existent. A return line appears to feed the basin, perhaps being attached to a submersible pump or a pump housed in a burial vault adjacent to the vessel. There appears to be no provisions for filtration. There currently is a small feed line that was most likely used for fill purposes.

- Mechanical Condition – Electrical

 Generally non-existent.

- Mechanical Condition – Equipment

 Non-existent

- Interior Surface Condition

 Generally poor, painted concrete surface

The Hollyhock House Fountains Restoration
Summary of Cause of Condition

- Structural Condition

Most likely due to inadequate preparation of soils which support the vessel. Proper compaction and certification at the time of construction was not regulated and no guarantee can be made as to what degree of compaction was provided for the soils that support the vessel. Unless designed for unfavorable soils conditions, structures placed in dirt derive a significant amount of their strength from the soils in which they are founded. If there is uneven compaction, or if the vessel is placed on bearing materials of different values, i.e. partially on bedrock and fill, settlement of the supporting soils can occur underneath and around the vessel. With the vessel unevenly supported, unless designed structurally for this, structural cracking can occur. Additionally, without forensic assessment, no guarantee of the materials used to construct the vessel can be made. It is assumed that there is some reinforcement, most likely with a steel or wire fabric, in the concrete and that the concrete the vessel is comprised of has a modicum of strength. It is questionable if the concrete used at the time of construction was designed or tested and if any waterproofing agents were used in conjunction with the concrete mix. Constant saturation of the concrete mix may have caused deterioration of the steel support system, further weakening the structure. The reinforcement, if applicable, most likely has deteriorated in the area of the cracks and has no structural value.

- Mechanical Condition - Piping

Filtration piping is virtually non-existent. Condition cannot be assessed without forensic assessment; however, I question the value of making that assessment. The piping most likely was never efficient, nor was valued from a proper hydraulic standpoint.

Replenishment water supply – Fill line

Not suitable for fill, automatic fill device not installed and no backflow prevention device is installed as per current Los Angeles City standards.

The Hollyhock House Fountains Restoration
Overflow piping – Connection to sewer or storm drainage system cannot be ascertained without investigation. Piping currently appears to be cast-iron which may or may not have been installed at conception. Cast iron typically has a life span which is greatly decreased when chemically treated water is used.

- Mechanical Condition – Electrical Power and Bonding

 Non-existent – no assessment can be made towards the power supply and without demolishing the vessel, no assessment can be made as to whether the pool has been properly bonded.

- Interior Surface Condition

 Painted surface. Paint can be an aesthetic covering which provides a measure of waterproofing as well as a clean smooth and appealing effect. Paint is under duress from chemicals, water, and sunlight and once installed becomes a maintenance factor in that it must be replaced on a regular basis; yearly is not uncommon. The surface may have initially been a smooth coat of concrete or plaster type of surface which we are unable to determine without some destructive investigation.
Repair/Replacement Design Work Required

- Proposed replacement/repair design

 Initial thought would be to remove the entire structure, after thoroughly documenting size, shape and elevation landmarks, and replace with a similar structure using modern construction techniques.

 Common practices would include

 Aesthetic evaluation, discussion and direction as to intent of original design and direction of how to proceed

 Geological assessment of soils conditions and proper recommendations towards repair

 Evaluation of geological conditions by a licensed structural engineer and a recommendation and plan be provided as to structural design

 Design factors would include

 Concrete mix

 Concrete thickness

 Concrete additives, waterproofing additives

 Structural steel design

- Proposed hydraulic design

 Design factors would include

 Providing proper filtration,

 Fill/make up water

 Backflow prevention

 Overflow and waste water provisions

- Proposed electrical design

 The Hollyhock House Fountains Restoration
Design factors would include

- Power requirements
- Hook-up of equipment and proper time cycles
- Electrical bonding requirements
- Lighting (if desired)

- Equipment design
 Factors to include ultimate design intent of fountain, whether it is
to be a filtered, clear water system or to be a planted water garden
 - Equipment location
 - Pump sizes and efficiency
 - Filtration types and efficiency
 - Lighting aesthetics (if chosen)

- Interior finish and waterproofing design
 Design factors to include
 - Plaster versus paint versus cementitious products to provide
 waterproofing
 - Aesthetics of chosen material

An alternate to entirely replacing the structure is to perform a structural repair of the cracked
areas only. This would include partial demolition of the damaged area, enough to provide a
structural splice to the existing steel, and replacement of the concrete in that area. As mentioned
previously, the damage has likely occurred due to poor soils conditions and this repair will not
address those concerns. It may or may not work. Additionally, this repair will show signs of a

The Hollyhock House Fountains Restoration
“cold-joint”, or the distinction between the concrete pours which may or may not influence the aesthetics of the vessel. If the vessel is repainted, the appearance of the joint would be minimal.

An additional alternative to replacing the vessel is to fill the cracks with an epoxy material to attempt to “glue” the vessel together and then to coat the vessel with a fiberglass liner. The fiberglass liner is a flexible membrane that is applied on the existing structure. Because fiberglass is somewhat flexible, it would bridge the cracks and bend rather than crack, maintaining the watertight integrity of the vessel. I question the aesthetic value of a modern product like fiberglass in this application.
Summary

Although repair of existing structure is mentioned above, I truly feel the best definitive method of repair is to remove and replace the structure. All of the advances in construction techniques could be utilized while maintaining the essence of the original architecture. If we use proper cements such as a Colton or High-Early cement with a “washed” finish, we can ensure the look of the replacement is that of an “aged” vessel. While reconstructing the vessel, we can ensure that we are founded on proper bearing material and that the vessel is structurally designed to prevent cracking. We would provide a proper filtration system, most likely in an unobtrusive subterranean vault at a satellite location. If plant material is to be used, we would design for a biological system to promote a natural filtration in addition to a mechanical device. Proper fill and overflow devices would be installed to minimize saturation of the surrounding soils. Additionally, we could contemplate lighting as an enhancement to the vessel.
Replacement Estimate

Approximate cost to replace structure with current prevailing wage standards and excluding consultant fees – $125,000.00 - $150,000.00 +-

Repair Estimate

Approximate cost to repair existing structure with current prevailing wage standards and excluding consultant fees - $75,000.00 - $100,000.00 +-
Western Fountain, Square Terraced

Size

Overall size approximately 25' x 25'

Center section, approximately 16'

Upper terraced section, approximately 5' at 75% of the vessel

Total water quantity, both vessels; approximately 7,000 gallons

Original Design Intent

Subject to some speculation; ideas to include

- The fountain was to spill from the upper terraced sections into the larger center area
- The entire fountain water level to be at a similar elevation.
- The wall separating the vessels was intended to be a walk-way to view the planting material
- The upper terraced area being a place to contain and separate varieties of planted material
- The circular fountain was to flow west, through a meandering stream along the north section of the courtyard and house, flow through the house into the vessel in front of the fireplace and overflow into the large square vessel at the west side of the home, creating an idea of water flowing through the home
General Condition

The overall condition of the fountain is poor and unable to retain water. It is unfeasible for the fountain to be operational without significant work. The breakdown of condition is as follows;

• Existing Structural Condition

The fountain has several cracks at, below and above waterline. While the ones at waterline conceivably could be allowed to remain, the ones below the waterline would allow water to escape into the soils below, further exacerbating the damage. Additionally, the fountain has cracked and tipped at the south west corner significantly and is unable to retain water for any length of time.

• Mechanical Condition – Piping

Generally non-existent. There is an overflow line existing from the center of the planter at the east, possibly to accommodate the concept of the interior pond flowing into this vessel. Additionally there is an antiquated float type of automatic fill device covered by a modern stainless steel housing that is not operational at this time, nor is it connected to a backflow prevention device. There appears to be a drain pipe in the center of the vessel that is unable to be assessed without mechanical investigation.

• Mechanical Condition – Electrical

Generally non-existent.

• Mechanical Condition – Equipment

Non-existent

The Hollyhock House Fountains Restoration
• Interior Surface Condition

Generally poor, painted concrete surface
Summary of Cause of Condition

- Structural Condition

Most likely due to inadequate preparation of soils which support the vessel. Proper compaction and certification at the time of construction was not regulated and no guarantee can be made as to what degree of compaction was provided for the soils that support the vessel. Unless designed for unfavorable soils conditions, structures placed in dirt derive a significant amount of their strength from the soils in which they are founded. If there is uneven compaction, or if the vessel is placed on bearing materials of different values, i.e. partially on bedrock and fill, settlement of the supporting soils can occur underneath and around the vessel. With the vessel unevenly supported, unless designed structurally for this, structural cracking can occur. Additionally, without forensic assessment, no guarantee of the materials used to construct the vessel can be made. It is assumed that there is some reinforcement, most likely with a steel or wire fabric, in the concrete and that the concrete that the vessel is comprised of has a modicum of strength. It is questionable if the concrete used at the time of construction was designed or tested and if any waterproofing agents were used in conjunction with the concrete mix. Constant saturation of the concrete mix may have caused deterioration of the steel support system, further weakening the structure.

- Mechanical Condition - Piping

Filtration piping is virtually non-existent. Condition cannot be assessed without forensic assessment; however, I question the value of making that assessment. The piping most likely was never efficient, nor was valued from a proper hydraulic standpoint.

Replenishment water supply – Fill line

Not suitable for fill, automatic fill device not operational and no backflow prevention device is installed as per current Los Angeles City standards.

Overflow piping – Connection to sewer or storm drainage system cannot be ascertained without investigation. Piping currently appears to be cast-iron which may or may not have been installed at conception. Cast
Iron typically has a life span which is greatly decreased when chemically treated water is used.

- Mechanical Condition – Electrical Power and Bonding

 Non-existent – no assessment can be made towards the power supply and without demolishing the vessel, no assessment can be made as to whether the pool has been properly bonded.

- Interior Surface Condition

 Painted surface. Paint can be an aesthetic covering which provides a measure of waterproofing as well as a clean smooth and appealing effect. Paint is under duress from chemicals, water, and sunlight and once installed becomes a maintenance factor in that it must be replaced on a regular basis; yearly is not uncommon. The surface may have initially been a smooth coat of concrete or plaster type of surface which we are unable to determine without some destructive investigation.
Repair/Replacement Design Work Required

- Proposed replacement/repair design

Due to the significant damage from settlement, it is mandatory that any attempt at restoration includes addressing the soils conditions beneath. The vessel is significantly cracked and is completely out of level. Any attempts at patching or repair from structural standpoint would be temporary as cracking would probably occur during the first heavy rain from settlement, expansion or movement of the soils. Fiberglass lining would not work unless significant effort was put into leveling and stabilizing the vessel but I question the aesthetics of the fiberglass. The proper repair would include removing the entire structure, after thoroughly documenting size, shape and elevation landmarks, and replacing it with an identical structure using modern construction techniques. It is expected that the repair would require deep footings founded on competent bearing materials to ensure further settlement does not occur. An alternative to this may be to over excavate and re-compact in the area of the fountain prior to reconstruction and construct the new fountain as a “floating” structure which requires no support from the soils for strength. This not a desirable method of repair as further settlement may continue and “tipping” of the new shell may occur. There could be further discussion of excavation under the existing structure and providing additional structural support to the vessel by underpinning, but without knowledge of where suitable bearing materials are, it could be an open ended proposition of repair. Additionally, extensive remedial concrete work would need to be done at the surface to ensure further leaking does not occur and the cracks are properly filled. Again, an undesirable method of definitive repair.

Common construction practices would include-

Aesthetic evaluation, discussion and direction as to intent of original design and direction of how to proceed

Geological assessment of soils conditions and proper recommendations towards repair

Evaluation of geological conditions by a licensed structural engineer and a recommendation and plan be provided as to structural design

The Hollyhock House Fountains Restoration
Design factors would include

- Concrete mix
- Concrete thickness
- Concrete additives, waterproofing additives
- Structural steel design

- Hydraulic design
- Design factors would include
 - Providing proper filtration,
 - Fill/make up water
 - Backflow prevention
 - Overflow and waste water provisions

- Electrical design
 - Design factors would include
 - Power requirements
 - Hook-up of equipment and proper time cycles
 - Electrical bonding requirements
 - Lighting (if desired)

- Equipment design
 - Factors to include ultimate design intent of fountain, whether it is to be a filtered, clear water system or to be a planted water garden
 - Equipment location
 - Pump sizes and efficiency
 - Filtration types and efficiency

The Hollyhock House Fountains Restoration
Lighting aesthetics (if chosen)

- Interior finish and waterproofing design

Design factors to include

 Plaster versus paint versus cementitious products to provide waterproofing

 Aesthetics of chosen material
Summary of Repair

Although repair of existing structure is mentioned above, I truly feel the best definitive method of repair is to remove and replace the structure. All of the advances in construction techniques could be utilized while maintaining the essence of the original architecture. If we use proper cements such as a Colton or High-Early cement with a “washed” finish, we can ensure the look of the replacement is that of an “aged” vessel. While reconstructing the vessel, we can ensure that we have a proper bearing material and that the vessel is structurally designed to prevent cracking. We would provide a proper filtration system, most likely in an unobtrusive subterranean vault at a satellite location. If plant material is to be used, we would design for a biological system to promote a natural filtration in addition to a mechanical device. Proper fill and overflow devices would be installed to minimize saturation of the surrounding soils. Additionally, we could contemplate lighting as an enhancement to the vessel.
Replacement Estimate

Approximate cost to replace structure with current prevailing wage standards and excluding consultant fees; pending review of soils conditions – $175,000.00 - $200,000.00 +-

Repair Estimate

Approximate cost to repair existing structure with current prevailing wage standards and excluding consultant fees - $100,000.00 - $150,000.00 +-
Consultant List and Description of Services

- Historical expert

 To ensure the replacement design intent is historically accurate

- Surveyor

 To accurately document the existing structure size, elevation and location

- Geologist/Soils Engineer

 To ensure the repair/replacement is founded on compenat soils with a bearing value that will support the new structure or ensure that the repair is feasible from a geological standpoint. Work that is required would include test-pits, assessment of compaction, recommendation of support system

- Structural Engineer

 To ensure the replacement/repair is mathematically calculated for design strength and to collaborate with the geological consultant to ensure further damage does not occur

- Hydraulic/Mechanical Consultant

 To provide flow design, equipment location, code required freshwater connection requirements and overflow connections

- Electrical Consultant

 To provide proper load requirements, proper bonding plan and code required connections. Additionally may be required for lighting design

- Landscape Architect or Designer

 To provide planting schedule for plant replacement

- Contractor

 To execute the plan

The Hollyhock House Fountains Restoration